
Graphs, Search, Pathfinding

(behavior involving where to go)

Static, Kinematic, & Dynamic Movement;
Steering, Flocking, Formations

(behavior involving how to go)

1

Disclaimer: I use these notes as a guide rather than a
comprehensive coverage of the topic. They are neither a
substitute for attending the lectures nor for reading the
assigned material.

Announcements

• HW 3 due Sunday night, September 22
• “Judder”/”Jidder”: shaky movement

when steering behaviors conflict
• Swarming:

– https://en.wikipedia.org/wiki/Swarm_beh
aviour

– Ant colony optimization lib for py:
• https://pypi.python.org/pypi/ACO-Pants

• BSP: http://game-
ai.gatech.edu/sites/default/files/docu
ments/assignments/bsp.html

2Buckland Fig 3.19

https://en.wikipedia.org/wiki/Swarm_behaviour
https://pypi.python.org/pypi/ACO-Pants
http://game-ai.gatech.edu/sites/default/files/documents/assignments/bsp.html

PREVIOUSLY ON…

3

N-2: Movement & Steering

1. What do movement algorithms output in static environ?
2. What do movement algorithms input in kinematic environ?
3. What do movement algorithms output in kinematic environ?
4. What is the deal with time & variable frame rates?
5. What was the insight about updates if time << 1?
6. How are kinematic seek and pursue different?
7. What's the point of kinematic arrival?
8. Kinematic wander varies what randomly?
9. What’s the main difference between kinematic and

steering/dynamic movement?

4

N-2, 1: Flocking, Steering

1. Steering vs flocking vs swarming?

2. Steering Family Tree

3. How might we combine
behaviors?

4. Can we be sure combinations work?

5. What three steering mechanisms enable flocking?

6. Spatial partitioning w/ special data structures:
Why? How?

Millington Fig 3.29

Buckland Fig 3.16

Clarifications

• Two tier nav: local vs global

– use steering on local

– perform seek on sequence of path nodes for global

• acceleration & forces vs instant velocity changes

• avoiding obstacles while seeking: more discussion

6

Movement & Steering Basics

• Movement calculation often needs to interact with the “Physics” engine
– Avoid characters walking through each other or through obstacles

• Traditional: kinematic movement (not dynamic)
– Characters move (often at fixed speed) instantaneously
– No regard to how physical objects accelerate or brake
– Output: direction to move in (instantaneous change to velocity with magnitude)

• Newer approach: Steering behaviors or dynamic movement (Craig
Reynolds) –
– Characters accelerate and turn based on physics
– Take current motion of character into account
– Output: forces or accelerations that result in velocity change
– flocking ⊂ steering

http://www.cse.scu.edu/~tschwarz/coen266_09/PPT/Movement%20for%20Gaming.ppt
7

struct StaticState:

position # 2D vector

orientation # single float

struct StaticMovementOutput:

position # 2D/3D vector

orientation # single float

8

Kinematics

• We describe a moving character by
– Position: 2 or 3-D vector
– Orientation:

• 2-dimensional unit vector given by an angle, OR a single
real value between 0 and 2

– Velocity (linear velocity): 2 or 3-D vector
– Rotation (angular velocity)

• 2-dimensional unit vector given by an angle, OR a single
real value between 0 and 2

• Movement behaviors output
– Velocity
– Rotation

• Movement behaviors input STATIC data
– Position and orientation, no velocities

9

struct KinematicState:

position # 2D/3D vector

orientation # single float

velocity # 2D/3D vector

rotation # single float

Note: rotation is angular velocity

struct KinematicOutput:

velocity # 2D/3D vector

rotation # single float rps

Note: Kinematic movement
algorithms only input position and
orientation, output desired velocity

10

Direction and Distance

• Normalize for unit vector

• Magnitude for distance

Simple Movement

• Orient agent velocity in target direction

• Very aggressive and doesn’t look very natural (can change dir
instantaneously)

• Fine for discrete movement (on a grid)

Goal

Steering Movement

• Turn towards target vector

• Adjust speed, perhaps slowing forward velocity if target
angle is large and accelerating to max velocity as target
angle becomes small

Goal

Steering Behavior: Performance Envelope

• Typically: constant acceleration and enforced max velocity for
translations and rotations (speed and turn rates)

• Can get progressively more advanced, introducing acceleration
curves, separate deceleration rates, speed dependent turn
rates, etc.

• Can be based on forces/torques, and agent mass

Kinematic Seek & Flee

• directs an agent toward a target position

• Input: static data of character & target

• Output: velocity in direction from char to targ
 velocity = target.position – character.position

• Normalize velocity to 1 and multiply by maximum velocity

• Can ignore orientation, or update to face movement direction

• O(1) in time and memory

• Flee = -1 * velocity = character.position – target.position

15

Identify target

• Calculate relative position vector. A is target, B is ‘me’

– Velocity = target.position – character.position

Prediction (Pursue/Evade)

• No need to calculate precise
intercept
– Recalculating every frame anyways

• Dist = (target.pos –
char.pos).Length()

• lookAheadT = Dist/char.maxSpeed

• futureTarget = target.pos +
lookAheadT * target.velocity

• //Steer towards futureTarget

Prediction Gotchas

• Watch out for extreme predictions (very large lookahead t
values)

• Could be sending your agent off the map or result in odd
behavior

• Consider clamping max time prediction (and even minimum)

• Consider clipping extrapolated future positions to fit on
navmesh or map, etc.

Kinematic Arrival

• Seek with full velocity leads to overshooting

– Arrival modification: deceleration

• Determine arrival target radius

• Lower velocity within target for arrival

Arrival Circle:

Slow down if
you get here

steering.velocity = target.position – character.position;

if(steering.velocity.length() < radius) {

steering.velocity /= timeToTarget;

if(steering.velocity.length() > MAXIMUMSPEED)

steering.velocity /= steering.velocity.length();

}

else

steering.velocity /= steering.velocity.length();

http://www.cse.scu.edu/~tschwarz/coen266_09/PPT/Movement%20for%20Gaming.ppt

Millington 3.2.1
19

Kinematic Wander
• Move in current direction at max speed

• Vary orientation by some random amount each frame

– randomBinomial() = rand() – rand(), where rand returns [0,1]

– random number between −1 and 1, where values around zero are
more likely

Millington Fig 3.7
20

Buckland Fig 3.4

Steering Input Basics

• Input: agent kinematic and target info
– Target collision info

– Target trajectory

– Target location

– Average flock information

• Steering behavior doesn’t attempt to do much
– Each alg. does a single thing. Fundamental behavior “zoo”

– Combine simple behaviors to make complex

– No: avoid obstacles while chasing character and making detours to nearby
power-ups

21

Dynamic/Steering Output

struct KinematicState:

position # 2D/3D vector

orientation # single float

velocity # 2D/3D vector

rotation # single float

Note: rotation is angular velocity

struct SteeringOutput:

linear_acc # 2D/3D vector

angular_acc # single float

22

Dynamic Movement Updates

• Dynamic movement update
– Accelerate in direction of target until maximum velocity is reached

– (Optional) If target is close, lower velocity (Braking)
• Negative acceleration is also limited

– (Optional) If target is very close, stop moving

• Dynamic movement update with Physics engine
– Acceleration is achieved by a force

– Vehicles etc. suffer drag, a force opposite to velocity that increases with
the size of velocity
• Limits velocity naturally

23

Seek + Arrive

Updates to Position & Orientation

• steering.linear: a 2D vector
– Represents changes in velocity (linear acceleration)

• steering.angular: a real value
– Represents changes in orientation (angular acceleration)

• def update(steering, time)
– Update at each frame (if time << 1, use Newton-Euler-1)

• Position += Velocity * Time + 0.5 * steering.linear * time * time

• Orientation += Rotation * Time + 0.5 * steering.angular * time * time

• Velocity += steering.linear * Time

• Rotation += steering.angular * Time

24

Don’t forget to check for speeding!
If Velocity.length() > maxSpeed:

velocity.normalize()
velocity *= maxSpeed

Don’t forget to assign new
orientation as modulo (2 )

Core Steering Behaviors

• Variable Matching
– Seek (flee): position of target

– Align: orientation of target

– Arrive (leave(flee)): velocity of target

– Velocity Matching: flocking

• Best way to get a feel:
– Look at pseudo-code in Millington & Funge

– run steering behavior program from source www.ai4g.com,
https://github.com/idmillington/aicore

25

Seek

Seek + Arrive

http://www.ai4g.com/
https://github.com/idmillington/aicore

Derived & Composite Steering Behaviors

• More complex behaviors derived from core

– Pursue (evade): Seek (flee) based on predicted target position

– Face: Align to target orientation

– Look where going: Face in direction of movement (using Align)

– Collision avoidance: Flee based on obstacle proximity

– Wander: Seek + Face some fictitious moving object

26

Dynamic Seek

• Seek: Match position of character with the target

• Like kinematic seek, find direction to target and go there as fast as possible
– Kinematic outputs: velocity, rotation

– Dynamic output: linear and angular acceleration

• Kinematic seek:
– velocity = target.position – character.position

– velocity = (velocity.normalize())*maxSpeed

• Dynamic seek:
– acceleration = target.position – character.position

– acceleration = (acceleration.normalize())*maxAcceleration

27

28

http://www.red3d.com/cwr/steer/gdc99/

desired_velocity = normalize (position - target) * max_speed
steering = desired_velocity - velocity

http://www.red3d.com/cwr/steer/gdc99/

(static, kinematic, dynamic) Movement
Steering Continued, Flocking, Formations

2019-09-11

M&F 3.1-3.4

B 3

Obstacle and Wall Avoidance

• Cast one or more (distance-
bounded) rays out in direction of
motion

• Use collisions to create sub-
target for avoidance

• Perform basic seek on sub-target

• Alternatives:

– Avoidance force

– Flow field

30

Millington Fig 3.24

Obstacle Test – Single Ray Falls Short

• No hard and fast rules as to which is better

Often good
start

The Corner Trap

• multi-ray wall avoidance can get stuck on corners

• What happens below?

32
M&F 3.27

Flow/Force/Vector Fields

• Motion specification without use of
programming (can used by art staff
directly)

• character steers to align its motion
with the local tangent of field
– Future position of a character is

estimated, and flow field is sampled at
that location.

– This flow direction (vector F) is the
“desired velocity”

– The steering direction (vector S) is the
difference between the current
velocity (vector V) and the desired
velocity (vector F)

33

http://www.red3d.com/cwr/steer/gdc99/

http://www.red3d.com/cwr/steer/gdc99/

Other approaches worth noting

• Smart maps / smart environments

– choke points are particularly
problematic: kitchen door in
restaurant

– Navigation fields provide authorial
control

• Lane formation

34

Composite Behaviors

• Pursue / Evade

• Face / Look
where going

• Wander

• Collision
Avoidance

• Obstacle
Avoidance

• Separation
Millington Fig 3.29

35

Variable Matching Conflicts

• Match position and orientation? Ok

• Match position and velocity? Conflict

• Moral: have individual variable matching algorithms, and
conflict-resolving combination algorithm

36
can’t avoid an obstacle and chase missing a narrow doorway

Millington Fig 3.35 & 3.36

Combine Steering Behaviors: Problem

• What if steering
behaviors are opposed?

• Zero vector!

• Or back and forth
forever!

• Or orbiting!

• Need higher level control
logic!

Exactly aligned Forces balance out in

dead end

Millington Fig 3.35 & 3.36 38

can’t avoid an obstacle and chase

Missing a narrow doorway

Combining Steering Behavior

• Sum (w/ max speed enforced)
• (Weighted) Blending

– Execute all steering behaviors
– Combine results by calculating a compromise

based on weights
• Example: Flocking based on separation and

cohesion

• Fixed priorities
• Arbitration

– Selects one proposed steering
• Not mutually exclusive
• Emergent Behavior

39

Weighted Blending

• Simplest way to combine steering behaviors

• Weighted linear sum of accelerations from all involved steering
behaviors

• Post-processing velocity threshold

• E.g. rioting crowd may have 1*sep + 1*cohes

• Finding “right” weight can be challenging
– Characters can get stuck (equilibrium)

– Constrained environments (conflicts)

– Jidder

40

Multiple Steering Goals? Combining steering
behaviors

(static, kinematic, dynamic) Movement
Steering, Flocking, Formations

2019-09-16
M&F 3.1-3.4

B 3
http://www.red3d.com/cwr/steer/gdc99/

https://en.wikipedia.org/wiki/Swarm_behaviour

http://www.red3d.com/cwr/steer/gdc99/
https://en.wikipedia.org/wiki/Swarm_behaviour

They’re flocking this way

https://www.youtube.com/watch?v=nM-RPO10aPY

43
https://www.youtube.com/watch?v=QbUPfMXXQIY

https://www.youtube.com/watch?v=nM-RPO10aPY
https://www.youtube.com/watch?v=QbUPfMXXQIY

Problems

• Bunching:

– https://www.youtube.com/watch?v=ZIAmoRsu3Z0&feature=youtu.b
e&list=PLxGbBc3OuMgg7OuyLfvXQLR6HKcoglCfG&t=1833

– AIIDE 2015 keynote, Adam Noonchester. “AI In The
Awesomepocalypse”

– Sunset Overdrive: IGN 9.0 “Awesome”, Editors’ choice

• Too close:

– https://youtu.be/ZIAmoRsu3Z0?list=PLxGbBc3OuMgg7OuyLfvXQLR6
HKcoglCfG&t=1713

44

https://www.youtube.com/watch?v=ZIAmoRsu3Z0&feature=youtu.be&list=PLxGbBc3OuMgg7OuyLfvXQLR6HKcoglCfG&t=1833
https://youtu.be/ZIAmoRsu3Z0?list=PLxGbBc3OuMgg7OuyLfvXQLR6HKcoglCfG&t=1713

Flocking and Swarming

• Craig Reynold’s “boids” (Flocking != Swarming)

• https://www.youtube.com/watch?v=86iQiV3-3IA

• https://www.youtube.com/watch?v=QbUPfMXXQIY

• Simulated (apparent behavior of) birds, 1986

• Blends three steering mechanisms (ordered)

– Separation: Move away from other birds that are too close

– Cohesion: Move to center of mass of flock

– Alignment: Match orientation and velocity of flock

• Equal Weights for simple flocking behavior

45

https://www.youtube.com/watch?v=QbUPfMXXQIY
https://www.youtube.com/watch?v=QbUPfMXXQIY

But 1st: won’t you be my neighbor

Millington Fig 3.31
Buckland Fig 3.18

Millington Fig 3.32

46

Buckland Fig 3.15

Recall findNearestWaypoint()

• Most engines provide a rapid “nearest” function for objects

• Spatial partitioning w/ special data structures:
– Quad-trees (2d), oct-trees (3d), k-d trees

– Binary space partitioning (BSP tree):
https://en.wikipedia.org/wiki/Binary_space_partitioning

– Multi-resolution maps (hierarchical grids)

• The gain over all-pairs techniques depends on number of
agents/objects
– Brute force: O(n2) //every boid to each other

Buckland Fig 3.18
47

https://en.wikipedia.org/wiki/Binary_space_partitioning

Boids – bin-lattice

• Spatial sub-division

• When boid moves, check to see if
it is in a new bin (update
accordingly)

• O(n k) – k is number of
surrounding bins to consider

48

https://pdfs.semanticscholar.org/4183/faeef708a56b988742b5
572fce9174caec7b.pdf

https://pdfs.semanticscholar.org/4183/faeef708a56b988742b5572fce9174caec7b.pdf

Demo

• Another big shoal (neighbors)

49

Separation

• Steer to avoid crowding local
flockmates

– Force to steer a bot away from neighbors

– Neighborhood is a sphere of certain
radius, or possibly a cone of perception

– The vector to each bot under
consideration is normalized, divided by the
distance to the neighbor, and added to the
steering force.

http://www.red3d.com/cwr/boids/

50

Cohesion

• Steer to average position (center
of mass) of local flockmates

– Desired position (center of mass):
iterate through all neighbors and
average their positions

– Seek to desired position

51

* Center of mass is the average
position (X,Y,Z) of boids in
neighborhood.

http://www.red3d.com/cwr/boids/

Alignment

• Steer towards average heading

– Attempts to keep bots aligned with neighbors

– Desired heading: iterate through all neighbors
and average their heading vectors

– For each neighbor, subtract bot’s heading
from desired heading

52

* Average heading and velocity of
other boids in neighborhood

http://www.red3d.com/cwr/boids/

Buckland Fig 3.16 53

Demo

• Flocking (turn on and off)

• Big shoal (blending other behaviors)

54

Flocking Demos

• http://www.red3d.com/cwr/boids/

• http://www.red3d.com/cwr/boids/applet/

55

http://www.red3d.com/cwr/boids/
http://www.red3d.com/cwr/boids/applet/

See Also

• M Ch 3, B Ch 3 (& Ch 1)

• Source from Millington

– https://github.com/idmillington/aicore

• Java-based animations (combined behaviors)

– http://www.red3d.com/cwr/steer/

• http://www.cse.scu.edu/~tschwarz/coen266_09/PPT/Movement%20for
%20Gaming.ppt

56

https://github.com/idmillington/aicore
http://www.red3d.com/cwr/steer/

